1 条题解

  • 0
    @ 2025-4-6 21:38:59

    先来普及一下二分图的概念,

    如图中有两个集合,U和V。只要U、V同一集合内点不直接相交(可以间接相连)就属于二分图。

    匹配: 一条边的两个端点分别在两个集合里,这条边就是匹配边。最大匹配数图中最多能存在的没有公共端点的匹配边的数目

    上图最大匹配数是4,U集合有点没连上也没办法,已经没有空的V点了。

    增广路

    假设只确定了一条匹配边(红色的),那么两条蓝色和红色的组成一条增广路,增广路的定义是:起点和终点是非匹配点,路径由匹配边与非匹配边交替。 显然,一条增广路的非匹配边比匹配边多1条,我们将蓝色的当作匹配边,红色当作非匹配边,这四个点的匹配边数就可以加1。 匈牙利算法的原理就是通过找增广路径来更新最大匹配边数。

    具体匈牙利算法模拟可以看下面链接。 嗯,里面用男女关系来讲解确实简单易懂 趣味算法系列之匈牙利算法

    下面讲题 Alice and Bob often play games on chessboard. One day, Alice draws a board with size M * N. She wants Bob to use a lot of cards with size 1 * 2 to cover the board. However, she thinks it too easy to bob, so she makes some holes on the board (as shown in the figure below).

    We call a grid, which doesn’t contain a hole, a normal grid. Bob has to follow the rules below:

    1. Any normal grid should be covered with exactly one card.
    2. One card should cover exactly 2 normal adjacent grids.

    Some examples are given in the figures below:

    A VALID solution

    An invalid solution, because there exists a grid, which is not covered. Your task is to help Bob to decide whether or not the chessboard can be covered according to the rules above. input There are 3 integers in the first line: m, n, k (0 < m, n <= 32, 0 <= K < m * n), the number of rows, column and holes. In the next k lines, there is a pair of integers (x, y) in each line, which represents a hole in the y-th row, the x-th column. output If the board can be covered, output “YES”. Otherwise, output “NO”. Sample input 4 3 2 2 1 3 3 Sample output YES

    题意是要用多条纸带覆盖一幅图的格子,因为一条纸带只能覆盖两个相邻的格子,我们将有洞的排除掉,将好的分成奇数和偶数号格子(我这里是根据横纵坐标和的奇偶性来分)。红色是奇数格子的编号,蓝色是偶数格子的编号。

    把奇数格子和偶数格子当成二分图的两个集合求最大匹配边即可。如果最大匹配边数乘2和剩下格子数相等,就可以全覆盖。如果剩下格子为单数必定不能全覆盖。

    #include<cstdio>
    #include<string.h>
    using namespace std;
    const int M=35*35;
    bool used[M];     //记录偶数格子是否被使用;
    int dan[M];        //记录偶数格子和哪个单数格子配对;
    bool match[M][M];
    int map1[35][35];
    int v1,v2;      // v1单数格子数,v2偶数格子数;
    bool dfs(int x)
    {
        for(int i=1;i<v2;i++)
        {
            if(match[x][i]&&!used[i])
            {
                used[i]=true;
                if(dan[i]==0||dfs(dan[i]))
                {
                    dan[i]=x;
                    return 1;
                }
            }
        }
        return 0;
    }
    int seek(int n)
    {
        memset(dan,0,sizeof(dan));
        int ans=0;
        for(int i=1;i<n;i++)
        {   memset(used,0,sizeof(used));
            if(dfs(i))
                ans+=1;
        }
        return ans;
    }
    int main()
    {
        int n,m,k;
        while(~scanf("%d%d%d",&m,&n,&k))
        {
            int x1,y1;
            memset(map1,0,sizeof(map1));
            for(int i=0;i<k;i++)
            {
                scanf("%d%d",&x1,&y1);
                map1[y1][x1]=-1;           //题目的陷阱
             }
            if ((n*m - k) % 2 != 0)
            {
                printf("NO\n");
                continue;
            }
            v1=v2=1;
            for(int i=1;i<=m;i++)
            {
                for(int j=1;j<=n;j++)
                {
                    if(map1[i][j]==0)
                    {
                        if((i+j)%2==0)
                        {
                            map1[i][j]=v2++;
                        }
                        else
                        {
                            map1[i][j]=v1++;
                        }
                    }
                }
            }
            for(int i=1;i<=m;i++)
            {
                for(int j=1;j<=n;j++)
                {
                    if((i+j)%2==0||map1[i][j]==-1)
                    {
                        continue;
                    }
                    if(i-1>0&&map1[i-1][j]>0)
                    {
                        match[map1[i][j]][map1[i-1][j]]=true;
                    }
                    if(j-1>0&&map1[i][j-1]>0)
                    {
                        match[map1[i][j]][map1[i][j-1]]=true;
                    }
                    if(i+1<=m&&map1[i+1][j]>0)
                    {
                        match[map1[i][j]][map1[i+1][j]]=true;
                    }
                    if(j+1<=n&&map1[i][j+1]>0)
                    {
                        match[map1[i][j]][map1[i][j+1]]=true;
                    }
                }
            }
            int cnt=seek(v1);
            if(cnt==(n*m-k)/2)
                printf("YES\n");
            else
                printf("NO\n");
        }
    }
    
    • 1

    信息

    ID
    1447
    时间
    1000ms
    内存
    256MiB
    难度
    10
    标签
    递交数
    3
    已通过
    1
    上传者