1 条题解
-
0
解题思路
面的解析: 每个面由多个点组成,这些点位于一个正交平面上(即所有点的某一坐标相同)。 通过解析这些面,可以确定Bulk的边界范围。
离散化坐标: 将所有面的坐标点进行离散化处理,得到所有可能的X、Y、Z坐标值,并排序去重。这样可以将连续的坐标空间划分为离散的区间,便于后续处理。
扫描线算法: 使用扫描线算法(类似于计算三维物体的体积)来遍历离散化后的坐标空间。对于每个离散化的区间(即单位立方体的可能位置),检查其是否被包含在Bulk的内部。
判断立方体是否在内部: 对于每个单位立方体,检查其在各个方向上是否被面包围。可以通过射线法或其他几何方法判断点是否在面内。
计算体积: 统计所有被判定为内部的单位立方体的数量,即为Bulk的体积。
代码实现
#include <iostream> #include <algorithm> using namespace std; #define MAX_SURFACES 1000 #define MAX_EDGES 1000 int Compare(const void *e1, const void *e2); bool SurfaceHit(int index, int innerx, int innery); int FindSurface(int innerx, int innery, int startindex); void DoIt(); struct Edge { int X, Y; }; struct Surface { bool Clockwise; int Area; int InnerX, InnerY; int EdgeCount; bool TopInner; Edge Edges[MAX_EDGES]; }; struct SurfaceIndex { int Level; int Index; bool operator<(const SurfaceIndex& other) const { if (Level == other.Level) return Index < other.Index; return Level < other.Level; } }; SurfaceIndex SurfaceIndexes[MAX_SURFACES]; Surface Surfaces[MAX_SURFACES]; int SurfaceCount; int Compare(const void *e1, const void *e2) { const struct SurfaceIndex *si1 = (struct SurfaceIndex*)e1; const struct SurfaceIndex *si2 = (struct SurfaceIndex*)e2; if (si1->Level == si2->Level) return si1->Index < si2->Index ? -1 : 1; return si1->Level < si2->Level ? -1 : 1; } bool SurfaceHit(int index, int innerx, int innery) { int i; int maxy = -2000000000; bool result = false; for (i=0; i<Surfaces[index].EdgeCount; i++) { int last = (i == Surfaces[index].EdgeCount-1) ? 0 : i+1; int minx, maxx, y; if (Surfaces[index].Edges[i].X == Surfaces[index].Edges[last].X) continue; y = Surfaces[index].Edges[i].Y; minx = min(Surfaces[index].Edges[i].X, Surfaces[index].Edges[last].X); maxx = max(Surfaces[index].Edges[i].X, Surfaces[index].Edges[last].X); if (innery < y || y < maxy || innerx < minx || innerx >= maxx) continue; result = (Surfaces[index].Edges[i].X < Surfaces[index].Edges[last].X) ^ Surfaces[index].Clockwise; maxy = y; } return result; } int FindSurface(int innerx, int innery, int startindex) { int i; int level = SurfaceIndexes[startindex].Level; for (i=startindex; i>=0 && SurfaceIndexes[i].Level == level; i--); for (; i>=0; i--) { int index = SurfaceIndexes[i].Index; if (SurfaceHit(index, innerx, innery)) return index; } return -1; } void DoIt() { int i, j, surfaces, edges; int deltax, deltay, x, y; int level, volume; bool skip; cin >> surfaces; SurfaceCount = 0; for (i=0; i<surfaces; i++) { cin >> edges; skip = false; for (j=0; j<edges; j++) { cin >> Surfaces[SurfaceCount].Edges[j].Y >> Surfaces[SurfaceCount].Edges[j].X >> level; if (j == 0) SurfaceIndexes[SurfaceCount].Level = level; else if (level != SurfaceIndexes[SurfaceCount].Level) skip = true; } if (skip) continue; Surfaces[SurfaceCount].EdgeCount = edges; SurfaceIndexes[SurfaceCount].Index = SurfaceCount; Surfaces[SurfaceCount].Area = 0; for (j=0; j<edges; j++) { int last = (j == edges-1) ? 0 : j+1; if (Surfaces[SurfaceCount].Edges[j].X == Surfaces[SurfaceCount].Edges[last].X) continue; Surfaces[SurfaceCount].Area += Surfaces[SurfaceCount].Edges[j].Y * (Surfaces[SurfaceCount].Edges[last].X - Surfaces[SurfaceCount].Edges[j].X); } if (Surfaces[SurfaceCount].Area > 0) Surfaces[SurfaceCount].Clockwise = true; else { Surfaces[SurfaceCount].Clockwise = false; Surfaces[SurfaceCount].Area = -Surfaces[SurfaceCount].Area; } x = Surfaces[SurfaceCount].Edges[0].X; deltax = Surfaces[SurfaceCount].Edges[1].X - x; y = Surfaces[SurfaceCount].Edges[0].Y; deltay = Surfaces[SurfaceCount].Edges[1].Y - y; Surfaces[SurfaceCount].InnerX = x; Surfaces[SurfaceCount].InnerY = y; if (Surfaces[SurfaceCount].Clockwise) { if (deltay < 0) { Surfaces[SurfaceCount].InnerX--; Surfaces[SurfaceCount].InnerY--; } else if (deltax < 0) Surfaces[SurfaceCount].InnerX--; else if (deltax > 0) Surfaces[SurfaceCount].InnerY--; } else { if (deltax < 0) { Surfaces[SurfaceCount].InnerX--; Surfaces[SurfaceCount].InnerY--; } else if (deltay > 0) Surfaces[SurfaceCount].InnerX--; else if (deltay < 0) Surfaces[SurfaceCount].InnerY--; } SurfaceCount++; } sort(SurfaceIndexes, SurfaceIndexes + SurfaceCount); for (i=0; i<SurfaceCount; i++) { int index = SurfaceIndexes[i].Index; int hit = FindSurface(Surfaces[index].InnerX, Surfaces[index].InnerY, i); if (hit == -1) Surfaces[index].TopInner = true; else Surfaces[index].TopInner = !Surfaces[hit].TopInner; } volume = 0; for (i=0; i<SurfaceCount; i++) { int index = SurfaceIndexes[i].Index; if (Surfaces[index].TopInner) volume -= Surfaces[index].Area * SurfaceIndexes[i].Level; else volume += Surfaces[index].Area * SurfaceIndexes[i].Level; } cout << "The bulk is composed of " << volume << " units." << endl; } int main() { int i, n; cin >> n; for (i=0; i<n; i++) DoIt(); return 0; }
- 1
信息
- ID
- 398
- 时间
- 1000ms
- 内存
- 256MiB
- 难度
- 10
- 标签
- 递交数
- 3
- 已通过
- 1
- 上传者