#P1316. Self Numbers
Self Numbers
题目描述
1949年,印度数学家D.R.卡普雷卡尔(D.R. Kaprekar)发现了一类被称为自数(self - numbers)的数。对于任意正整数,定义为加上的各位数字之和(这里的代表“数字相加”,这是卡普雷卡尔创造的一个术语)。例如,。
以任意正整数作为起点,你可以构造出一个无限递增的整数序列,,,,... 。例如,若从开始,下一个数是,再下一个是,接着是,这样就生成了序列:
,,,,,,,,,,,,,...
数被称为的生成元。在上述序列中,是的生成元,是的生成元,是的生成元,依此类推。有些数有多个生成元,例如,有两个生成元,和。没有生成元的数就是自数。小于的自数有个:,,,,,,,,,,,和。
输入
本题没有输入。
输出
编写一个程序,按升序输出所有小于的正自数,每个数占一行。
输入示例
输出示例
1
3
5
7
9
20
31
42
53
64
|
| <-- a lot more numbers
|
9903
9914
9925
9927
9938
9949
9960
9971
9982
9993
来源
1998年美国中北部地区竞赛