1 条题解
-
0
题意分析:
要解决这个问题,我们需要找到一个平面,使得该平面能够接触到尽可能多的三维空间中的线段。关键在于如何高效地枚举所有可能的平面,并统计每条线段是否与该平面相交或接触。
解题思路:
1.平面定义:一个平面可以由方程 表示。我们需要找到这样的平面,使得尽可能多的线段与该平面相交或接触。 2.线段与平面的相交判断:对于线段 (端点 PP 和 QQ),如果平面满足 $(A⋅Px+B⋅Py+C⋅Pz+D)×(A⋅Qx+B⋅Qy+C⋅Qz+D)≤0(A⋅Px+B⋅Py+C⋅Pz+D)×(A⋅Qx+B⋅Qy+C⋅Qz+D)≤0$,则线段与平面相交或接触。特别地,等于零时表示至少有一个端点在平面上。 3.关键观察:最优解平面必然由至少三个不共线的点确定(因为两点确定一条直线,三点确定一个平面)。因此,我们可以枚举所有可能的三元组点(来自不同线段)来生成候选平面。
C++实现:
cpp
#include <iostream> #include <vector> #include <set> #include <algorithm> using namespace std; struct Point { int x, y, z; Point(int x, int y, int z) : x(x), y(y), z(z) {} bool operator<(const Point& other) const { if (x != other.x) return x < other.x; if (y != other.y) return y < other.y; return z < other.z; } bool operator==(const Point& other) const { return x == other.x && y == other.y && z == other.z; } }; struct Segment { Point p1, p2; Segment(int x1, int y1, int z1, int x2, int y2, int z2) : p1(x1, y1, z1), p2(x2, y2, z2) {} }; // 检查三点是否共线 bool are_collinear(const Point& a, const Point& b, const Point& c) { // 向量ab和ac的叉积为零则共线 int abx = b.x - a.x; int aby = b.y - a.y; int abz = b.z - a.z; int acx = c.x - a.x; int acy = c.y - a.y; int acz = c.z - a.z; int cross_x = aby * acz - abz * acy; int cross_y = abz * acx - abx * acz; int cross_z = abx * acy - aby * acx; return cross_x == 0 && cross_y == 0 && cross_z == 0; } // 计算平面方程 Ax + By + Cz + D = 0 的系数 void get_plane_coefficients(const Point& p1, const Point& p2, const Point& p3, int& A, int& B, int& C, int& D) { // 向量 p1p2 和 p1p3 int p1p2x = p2.x - p1.x; int p1p2y = p2.y - p1.y; int p1p2z = p2.z - p1.z; int p1p3x = p3.x - p1.x; int p1p3y = p3.y - p1.y; int p1p3z = p3.z - p1.z; // 叉积得到法向量 (A, B, C) A = p1p2y * p1p3z - p1p2z * p1p3y; B = p1p2z * p1p3x - p1p2x * p1p3z; C = p1p2x * p1p3y - p1p2y * p1p3x; D = -(A * p1.x + B * p1.y + C * p1.z); // 约简法向量的最大公约数 int gcd_val = __gcd(abs(A), __gcd(abs(B), __gcd(abs(C), abs(D)))); if (gcd_val != 0) { A /= gcd_val; B /= gcd_val; C /= gcd_val; D /= gcd_val; } // 确保法向量的第一个非零系数是正的 bool all_zero = (A == 0 && B == 0 && C == 0); if (!all_zero) { int first_non_zero = 0; if (A != 0) first_non_zero = A; else if (B != 0) first_non_zero = B; else if (C != 0) first_non_zero = C; if (first_non_zero < 0) { A = -A; B = -B; C = -C; D = -D; } } } int main() { int T; cin >> T; while (T--) { int n; cin >> n; vector<Segment> segments; set<Point> unique_points; for (int i = 0; i < n; ++i) { int x1, y1, z1, x2, y2, z2; cin >> x1 >> y1 >> z1 >> x2 >> y2 >> z2; segments.emplace_back(x1, y1, z1, x2, y2, z2); unique_points.insert(Point(x1, y1, z1)); unique_points.insert(Point(x2, y2, z2)); } vector<Point> points(unique_points.begin(), unique_points.end()); int max_count = 1; // 至少能碰到一个线段(平面经过其端点) // 枚举所有可能的三元组点生成平面 for (int i = 0; i < points.size(); ++i) { for (int j = i + 1; j < points.size(); ++j) { for (int k = j + 1; k < points.size(); ++k) { if (are_collinear(points[i], points[j], points[k])) { continue; // 共线的三点无法确定平面 } int A, B, C, D; get_plane_coefficients(points[i], points[j], points[k], A, B, C, D); int count = 0; for (const auto& seg : segments) { int val1 = A * seg.p1.x + B * seg.p1.y + C * seg.p1.z + D; int val2 = A * seg.p2.x + B * seg.p2.y + C * seg.p2.z + D; if (val1 == 0 || val2 == 0 || (val1 * val2 < 0)) { count++; } } max_count = max(max_count, count); } } } for (int i = 0; i < points.size(); ++i) { for (int j = i + 1; j < points.size(); ++j) { // 选择第三个点不共线 for (int k = 0; k < points.size(); ++k) { if (k == i || k == j) continue; if (are_collinear(points[i], points[j], points[k])) continue; int A, B, C, D; get_plane_coefficients(points[i], points[j], points[k], A, B, C, D); int count = 0; for (const auto& seg : segments) { int val1 = A * seg.p1.x + B * seg.p1.y + C * seg.p1.z + D; int val2 = A * seg.p2.x + B * seg.p2.y + C * seg.p2.z + D; if (val1 == 0 || val2 == 0 || (val1 * val2 < 0)) { count++; } } max_count = max(max_count, count); } } } cout << max_count << endl; } return 0; }
- 1
信息
- ID
- 3041
- 时间
- 6000ms
- 内存
- 512MiB
- 难度
- (无)
- 标签
- 递交数
- 0
- 已通过
- 0
- 上传者