1 条题解

  • 0
    @ 2025-4-8 14:47:36

    题意分析:

    要解决这个问题,我们需要找到一个平面,使得该平面能够接触到尽可能多的三维空间中的线段。关键在于如何高效地枚举所有可能的平面,并统计每条线段是否与该平面相交或接触。

    解题思路:

    1.平面定义:一个平面可以由方程 Ax+By+Cz+D=0Ax+By+Cz+D=0Ax+By+Cz+D=0Ax+By+Cz+D=0 表示。我们需要找到这样的平面,使得尽可能多的线段与该平面相交或接触。 2.线段与平面的相交判断:对于线段 PQPQPQPQ(端点 PP 和 QQ),如果平面满足 $(A⋅Px+B⋅Py+C⋅Pz+D)×(A⋅Qx+B⋅Qy+C⋅Qz+D)≤0(A⋅Px​+B⋅Py​+C⋅Pz​+D)×(A⋅Qx​+B⋅Qy​+C⋅Qz​+D)≤0$,则线段与平面相交或接触。特别地,等于零时表示至少有一个端点在平面上。 3.关键观察:最优解平面必然由至少三个不共线的点确定(因为两点确定一条直线,三点确定一个平面)。因此,我们可以枚举所有可能的三元组点(来自不同线段)来生成候选平面。

    C++实现:

    cpp

    #include <iostream>
    #include <vector>
    #include <set>
    #include <algorithm>
    using namespace std;
    
    struct Point {
        int x, y, z;
        Point(int x, int y, int z) : x(x), y(y), z(z) {}
        bool operator<(const Point& other) const {
            if (x != other.x) return x < other.x;
            if (y != other.y) return y < other.y;
            return z < other.z;
        }
        bool operator==(const Point& other) const {
            return x == other.x && y == other.y && z == other.z;
        }
    };
    
    struct Segment {
        Point p1, p2;
        Segment(int x1, int y1, int z1, int x2, int y2, int z2) : p1(x1, y1, z1), p2(x2, y2, z2) {}
    };
    
    // 检查三点是否共线
    bool are_collinear(const Point& a, const Point& b, const Point& c) {
        // 向量ab和ac的叉积为零则共线
        int abx = b.x - a.x;
        int aby = b.y - a.y;
        int abz = b.z - a.z;
        
        int acx = c.x - a.x;
        int acy = c.y - a.y;
        int acz = c.z - a.z;
        int cross_x = aby * acz - abz * acy;
        int cross_y = abz * acx - abx * acz;
        int cross_z = abx * acy - aby * acx;
        
        return cross_x == 0 && cross_y == 0 && cross_z == 0;
    }
    
    // 计算平面方程 Ax + By + Cz + D = 0 的系数
    void get_plane_coefficients(const Point& p1, const Point& p2, const Point& p3, int& A, int& B, int& C, int& D) {
        // 向量 p1p2 和 p1p3
        int p1p2x = p2.x - p1.x;
        int p1p2y = p2.y - p1.y;
        int p1p2z = p2.z - p1.z;
        
        int p1p3x = p3.x - p1.x;
        int p1p3y = p3.y - p1.y;
        int p1p3z = p3.z - p1.z;
        
        // 叉积得到法向量 (A, B, C)
        A = p1p2y * p1p3z - p1p2z * p1p3y;
        B = p1p2z * p1p3x - p1p2x * p1p3z;
        C = p1p2x * p1p3y - p1p2y * p1p3x;
        D = -(A * p1.x + B * p1.y + C * p1.z);
        
        // 约简法向量的最大公约数
        int gcd_val = __gcd(abs(A), __gcd(abs(B), __gcd(abs(C), abs(D))));
        if (gcd_val != 0) {
            A /= gcd_val;
            B /= gcd_val;
            C /= gcd_val;
            D /= gcd_val;
        }
        
        // 确保法向量的第一个非零系数是正的
        bool all_zero = (A == 0 && B == 0 && C == 0);
        if (!all_zero) {
            int first_non_zero = 0;
            if (A != 0) first_non_zero = A;
            else if (B != 0) first_non_zero = B;
            else if (C != 0) first_non_zero = C;
            
            if (first_non_zero < 0) {
                A = -A;
                B = -B;
                C = -C;
                D = -D;
            }
        }
    }
    
    int main() {
        int T;
        cin >> T;
        while (T--) {
            int n;
            cin >> n;
            vector<Segment> segments;
            set<Point> unique_points;
            
            for (int i = 0; i < n; ++i) {
                int x1, y1, z1, x2, y2, z2;
                cin >> x1 >> y1 >> z1 >> x2 >> y2 >> z2;
                segments.emplace_back(x1, y1, z1, x2, y2, z2);
                unique_points.insert(Point(x1, y1, z1));
                unique_points.insert(Point(x2, y2, z2));
            }
            
            vector<Point> points(unique_points.begin(), unique_points.end());
            int max_count = 1;  // 至少能碰到一个线段(平面经过其端点)
            
            // 枚举所有可能的三元组点生成平面
            for (int i = 0; i < points.size(); ++i) {
                for (int j = i + 1; j < points.size(); ++j) {
                    for (int k = j + 1; k < points.size(); ++k) {
                        if (are_collinear(points[i], points[j], points[k])) {
                            continue;  // 共线的三点无法确定平面
                        }
                        
                        int A, B, C, D;
                        get_plane_coefficients(points[i], points[j], points[k], A, B, C, D);
                        
                        int count = 0;
                        for (const auto& seg : segments) {
                            int val1 = A * seg.p1.x + B * seg.p1.y + C * seg.p1.z + D;
                            int val2 = A * seg.p2.x + B * seg.p2.y + C * seg.p2.z + D;
                            if (val1 == 0 || val2 == 0 || (val1 * val2 < 0)) {
                                count++;
                            }
                        }
                        max_count = max(max_count, count);
                    }
                }
            }
    
            for (int i = 0; i < points.size(); ++i) {
                for (int j = i + 1; j < points.size(); ++j) {
                    // 选择第三个点不共线
                    for (int k = 0; k < points.size(); ++k) {
                        if (k == i || k == j) continue;
                        if (are_collinear(points[i], points[j], points[k])) continue;
                        
                        int A, B, C, D;
                        get_plane_coefficients(points[i], points[j], points[k], A, B, C, D);
                        
                        int count = 0;
                        for (const auto& seg : segments) {
                            int val1 = A * seg.p1.x + B * seg.p1.y + C * seg.p1.z + D;
                            int val2 = A * seg.p2.x + B * seg.p2.y + C * seg.p2.z + D;
                            if (val1 == 0 || val2 == 0 || (val1 * val2 < 0)) {
                                count++;
                            }
                        }
                        max_count = max(max_count, count);
                    }
                }
            }
            
            cout << max_count << endl;
        }
        return 0;
    }
    
    • 1

    信息

    ID
    3041
    时间
    6000ms
    内存
    512MiB
    难度
    (无)
    标签
    递交数
    0
    已通过
    0
    上传者