#L3534. 「NOI2021」庆典

「NOI2021」庆典

题目描述

C 国是一个繁荣昌盛的国家,它由 nn 座城市和 mm 条有向道路组成,城市从 11nn 编号。 如果从 xx 号城市出发,经过若干条道路后能到达 yy 号城市,那么我们称 xx 号城市可到达 yy 号城市,记作 xyx \Rightarrow y。 C 国的道路有一个特点:对于三座城市 x,y,zx, y, z,若 xzx \Rightarrow zyzy \Rightarrow z,那么有 xyx \Rightarrow yyxy \Rightarrow x

再过一个月就是 C 国成立的千年纪念日,所以 C 国的人民正在筹备盛大的游行庆典。 目前 C 国得知接下来会有 qq 次游行计划,第 ii 次游行希望从城市 sis_i 出发,经过若干个城市后,在城市 tit_i 结束,且在游行过程中,一个城市可以被经过多次。 为了增加游行的乐趣,每次游行还会临时修建出 kk0k20 \leq k \leq 2)条有向道路专门供本次游行使用,即其他游行计划不能通过本次游行修建的道路。

现在 C 国想知道,每次游行计划可能会经过多少座城市

注意:临时修建出的道路可以不满足 C 国道路原有的特点

输入格式

从文件 celebration.in 中读入数据。

第一行包含四个整数 n,m,q,kn, m, q, k,分别表示城市数、道路数、游行计划数以及每次游行临时修建的道路数。

接下来 mm 行,每行包含两个整数 u,vu, v,表示一条有向道路 uvu \rightarrow v

接下来 qq 行,每行前两个整数 si,tis_i, t_i,表示每次游行的起点与终点;这行接下来有 kk 对整数 a,ba, b,每对整数表示一条临时添加的有向道路 aba \rightarrow b

数据保证,将 C 国原有的有向道路视为无向道路后,所有城市可以互达。

输出格式

输出到文件 celebration.out 中。

对于每次询问,输出一行一个整数表示答案。如果一次游行从起点出发无法到达终点,输出 00 即可。

5 6 4 1
1 2
1 3
1 4
2 5
4 5
5 4
1 4 5 1
2 3 5 3
1 2 5 2
3 4 5 1
4
4
4
0

数据规模与约定

对于 100100% 的数据:

1n,q3×1051 \le n, q \le 3 \times 10^5

n1m6×105n-1 \le m \le 6 \times 10^5

0k20 \le k \le 2